

International Symposium on Ultrafast Accelerators for Pulse Radiolysis Technical Roundtable

June 27, 2004
Chemistry Department
Brookhaven National Laboratory

Technical Roundtable Topics

- 10:40 Photocathodes (types, efficiency, lifetime, behavior, saturation, special considerations)
- 11:10 Pulse width measurement and control (real-time, non-destructive)
- 11:40 Temperature control for systems that are frequently cycling on and off, power dissipation
- 1:00 Real-time automated control of laser and accelerator performance
- 1:30 Detection schemes for T3 radiolysis
- 2:00 Other topics suggested by participants

Photocathodes

Types and efficiency

Mg is most widely used in this community - efficiency marginal Cs_2 Te proving to be reliable and sufficiently robust - good efficiency

Potential new development - diamond coating

Lifetime

Cathodes are lasting a long time (> year)

Behavior

Mg: dynamic effect of UV on quantum yield

Saturation

Importance of uniform illumination for highest charge

Other considerations

Pulse width measurement and control

Non-real-time measurement

Rise rime of prompt optical signal

Visible: water NIR: acetonitrile

Real-time measurement

Relative RF power radiated by beam at two frequencies (Waseda, others)

Optical Transition Radiation (OTR) from "back" of first pulse-probe mirror

Requires fs streak camera, bandpass filter, reflective transport optics

Effect of electron beam field on crystal birefringence

Pulse Width Measurement

Measurement of Beam-Induced Microwave Power at Two Frequencies

E. Babenko, R. K. Jobe, D. McCormick, and J. T. Seeman SLAC-PUB-6203 (PAC 93)

Proceedings of EPAC 2002, Paris, France

CHARACTARIZATION OF ELECTRON BEAM FROM A Mg PHOTO-CATHODE RF GUN SYSTEM *

R. Kuroda[†], Y. Hama, S. Kasahiwagi, H. Kawai, F. Nagasawa, M. Washio, Waseda University, Tokyo, Japan H.Hayano, J.Urakawa, KEK, Ibaraki, Japan X. J. Wang, BNL, New York, USA

Temperature control for systems that are frequently cycling on and off, power dissipation

Experience of various facilities

Operational modes

Sophistication of temperature control

Gun, klystron, waveguide, loads for reflected RF power

Work-arounds

Remote sample handling

Real-time automated control of laser and accelerator performance

- Beam Charge/pulse
- Electron pulse width
- Probe laser electron bunch synchronization
- Laser (UV) Accelerator RF phase
- Laser Pulse Energy UV
- Regenerative amplifier pulse train buildup
- YAG pump laser power (mode)
- RF power
- RF breakdown

T³ Radiolysis: Detection Schemes, Other Issues

AAC: Much progress in T³ systems as electron beam sources.

Valuable as ultrafast X-ray sources.

Detection Schemes for T³ Pulse Radiolysis

Transient Absorption

Detection geometry

Velocity distribution

Transverse beam profile/dose distribution